Neural activity in primary motor cortex related to mechanical loads applied to the shoulder and elbow during a postural task.

نویسندگان

  • D W Cabel
  • P Cisek
  • S H Scott
چکیده

Whole-arm motor tasks performed by nonhuman primates have become a popular paradigm to examine neural activity during motor action, but such studies have traditionally related cell discharge to hand-based variables. We have developed a new robotic device that allows the mechanics of the shoulder and elbow joints to be manipulated independently. This device was used in the present study to examine neural activity in primary motor cortex (MI) in monkeys (Macaca mulatta) actively maintaining their hand at a central target as they compensated for loads applied to the shoulder and/or elbow. Roughly equal numbers of neurons were sensitive to mechanical loads only at the shoulder, only at the elbow, or loads at both joints. Neurons possessed two important properties. First, cell activity during multi-joint loads could be predicted from its activity during single-joint loads as a vector sum in a space defined by orthogonal axes for the shoulder and elbow. Second, most neurons were related to flexor torque at one joint coupled with extensor torque at the other, a distribution that paralleled the observed activity of forelimb muscles. These results illustrate that while MI activity may be described by independent axes representing each mechanical degree-of-freedom, neural activity is also strongly influenced by the specific motor patterns used to perform a given task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primate upper limb muscles exhibit activity patterns that differ from their anatomical action during a postural task.

The present study examined muscular activity in the primate proximal forelimb during a posture task. By applying loads selectively to the shoulder, elbow, or both joints, we observed that monoarticular shoulder and elbow muscles varied their activity with loads at the unspanned joint. Shoulder monoarticulars changed activity with elbow torque and elbow monoarticulars changed activity with shoul...

متن کامل

Characterization of torque-related activity in primary motor cortex during a multijoint postural task.

The present study examined neural activity in the shoulder/elbow region of primary motor cortex (M1) during a whole-limb postural task. By selectively imposing torques at the shoulder, elbow, or both joints we addressed how neurons represent changes in torque at a single joint, multiple joints, and their interrelation. We observed that similar proportions of neurons reflected changes in torque ...

متن کامل

Comparison of neural responses in primary motor cortex to transient and continuous loads during posture.

The present study examined whether neurons in primary motor cortex (M1) exhibit similar responses to transient and continuous loads applied during posture. Rapid responses to whole-limb perturbations were examined by transiently applying (300 ms) flexor and extensor torques to the shoulder and/or elbow during postural maintenance. Over half of M1 neurons responded to these transient loads withi...

متن کامل

Nonuniform distribution of reach-related and torque-related activity in upper arm muscles and neurons of primary motor cortex.

The present study examined the activity of primate shoulder and elbow muscles using a novel reaching task. We enforced similar patterns of center-out movement while the animals countered viscous loads at their shoulder, elbow, both joints, or neither joint. Accordingly, we could examine reach-related activity during the unloaded condition and torque-related activity by comparing activity across...

متن کامل

Long-latency responses during reaching account for the mechanical interaction between the shoulder and elbow joints.

Although considerable research indicates that reaching movements rely on knowledge of the arm's mechanical properties and environment to anticipate and counter predictable loads, far less research has examined whether this degree of sophistication is present for on-line corrections during reaching. Here we examine the R2/3 response to mechanical perturbations (45-100 ms, also called the long-la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 86 4  شماره 

صفحات  -

تاریخ انتشار 2001